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Abstract-A variational method is presented for solving eigcnvaluc problems which arise in con-ion 
with the analysis of convective heat transfer in the thermal entrance region of ducts. Consideration is 
given to botb situations where the temperature profile depends upon one cross-sectional co=ordinate 
(e.g. circular tube) or upon two cross-sectional co-ordinates (e.g. rectangular duct). Tbe variational 
method is ilbtstrated and verified by application to iaminar beat transfer in a circukr tube and a 
parellcl-~Rte chsnml and good agmemcnt with existing numerical solutions is attained. Then, appli- 
cation is made to laminar baat transfer in a square duct as a chock, an alternate computation for the 
square duct is made using a metbod indicated by Millsaps and Poblbausen. The variational method 

can, in principle, also be applied to problems in turbulent beat transfer. 

R&smn&Une m&bode variationncbe sst p&sent& pour la r&obttion dos probkrnes de vakurs 
propres qui ae presentem dans I’analyse de la transmission de cbakur par conveotion dans la r&ion 
d’entrtc des conduitcs. On considhe les deux cas dam ksqueis le profil des tanp&atums depend soit 
d’une settle cootdonn&e dam la section droite (c’est&dire tuyaux circulaires) ou de deux coordonntes 
(tuyaux rectangubiims). La m&bode eat v&ill&e par application a la transmission de cbakur kminaire 
dans un tuyau circulaire et dam un canal a faces planes paralRles, on obtient un bon accord avec les 
soiutions num&riques existantes. Une application est faite ensuitc a la transmission de cbakur laminaim 
dans une oonduite oar&. A titre de contr&k, un calcul ditT&ent pour la conduite car+ est sffectti 
en utilisant la m&bode indiqude par Millsaps et Poblbausen. Cette m&bode variationne& petit @Ia 

met &re appliqu& aux probkmes de transmission de duleur turbuknte. 

B-Zur L&sung van Eigcnwertprobkmen des konvektivar W&rmeiI&rgangs beim 
therm&&en Einlauf in Ka&iie wird eine Variations-metbode mitgeteilt. Es wbd sowobl der Fall 
betracbtet, dam das Temperaturprofil von einer Querscbnittskoordinate (LB. Kreisrobr), ah such 
jener, bci der es von zwci Querscbnittskoordinatm (recbtwinkligcr Kanal) abbingt. Die Variations- 
metbode wird erliutcrt und auf den laminaren Wiirmctibergang im Krciwobr und im ebenen Spalt 
angewandt, wobei mit den bestehcnden numeriscben L&ungen eine gute Ubereinstimmung g&m&n 
wird. Sodann wird die Metbode auf den laminaren Wiinneiibergang im quadratiscben Kanal 
angewendet und mit einer Iterationsmcbnung nacb Millsaps und Poblbausen verglicben. Prinripiell 
kann die Variations-metbode aucb auf Probleme des turbulenten W&rmeipxrgangs angewendet we&n. 

Abstract-ga&rcn sapnaunooaa&t ~erog pemeana aagassi OThICKanxR co6creentxbn aiia- 
sennt ypansearfn, ocnosannr& na anaswse uoririeirrnnnoro Tennoo6nena BO BX~AHO~~ 
o6nacTn KUiaJlOB. PaCCMaTp~BalOTC~ Jtna CJIy’raff: OAKH, KOrAa TeAlUepaTJ'pH~ lIpO@Ib 
8aBRCHT OT OAHOfi KOOpAEH~TbInolIepe'iHoIV Ce~eHWi (HaIIpKMep,Kp)WlfWi Tpy6a),n BTOpOii 
-0T AByxKOOpAKHaTnonepewioro ce9eIIIIn (rianpnarep,iiaiia~ npJiMOyIWJlbHO~0 npo4mIu). 
Bapaanrronnti laerog ~nnioc~p~pyerca R noffreepmnaercrf npirxeriennent en, u cnyqaau 
TeIIJIOO6MeHa IlpU JlaWiHapHOM nOTOHe B KpyrJlOfi Tpy6e EI B IIJIOCKO-Ilap&Z'le;lbHOM 

KanaJre; noayqamcfi xopomee coBna~eHne C CymeCTBy~mUMH 4Kc.neRHbndK pemeHnsw4. 
3aTeM,aro~ YeTOn npmrewwrca KTennOO6MeHye yCllOBHJ?X naxrrtrapaoro I-IOTOKtl B KaHane 
c~sar(pa~~b~~npo#wxerd. Bnocnerpreu cnysae~~KOKTpOJrRnpoBenHpaC~8TnoyKaaaHHOMy 
&iJIJICanCOM H nOJIbXayBeEOM MeTOXy. B npHaIV¶ne BlipH~IlAOAHbIii MeTOA WOIKHO TaKFKe 

npaMeanTb H K aaffasana Tenaoo6MeHa B ycnoBaJ?x Typ6yneHTHoro IIOTOKP. 

* At present, Professor of Mechanical Engineering, University of Minnesota Minneapolis 14, Minnesota. 
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NOMENCLATURE 
constants in eigenfunction equation (8); 
half-height of parallel plate channel; 
half-length of side of square duct; 
coefficients in temperature distribution; 
specific heat at constant pressure; 
tube diameter, 2r0; 

functions of cross-section co-ordinates 
in equations (4a) and (10a); 

I0~  ~ integrals used in the variational pro- 
/1 . ' cedure; 

J, variational expression,/1 -- ~I~; 
k, thermal conductivity; 
N, normal direction; 
n, index number of eigenvalue; 
Pr, Prandtl number, v/a ; 
p, number of terms in eigenfunction equa- 

tion (8); 
Q, heat transfer rate per unit length; 
q, heat transfer rate per unit area; 
Re, tube Reynolds number, ~d/v; 
Re~, channel Reynolds number, ~,a/v; 
R~, nth eigenfunction; 
R,~, functions in eigenfunction equation (8); 
r, radial co-ordinate; re, tube radius; 
T, static temperature; T~, wall temperature; 

Tb, bulk temperature; To, entering 
temperature; 

w, axial velocity distribution; ¢, average 
velocity; 
cross-section co-ordinate; X = x/a; 
cross-section co-ordinate; Y = y/a; 
axial co-ordinate; Z = z/a; 
thermal diffusivity, k/9c.; 
nth eigenvalue; 

X~ 

Y, 
Z, 
ft., 

)?') 

I 
~2 j 
F~ 

P, 

, cross-section co-ordinates; 

kinematic viscosity; 
density; 
fully developed temperature distribution 
in square duet; 

Subscript: 
fd, denotes fully developed condition. 

INTRODUCTION 
IN a previous paper [1], it was shown that 
variational methods could be successfully applied 
to the computation of the fully developed heat 
transfer characteristics for forced-convection 
flow in passages. Here, attention is directed to 
the thermal entrance region of flow passages. 
Our aim is to formulate and apply a variational 
procedure which may be used to determine 
entrance-region heat-transfer results. To illus- 
trate the method and to establish confidence in 
its predictions, variational calculations are first 
carried out for the circular tube and the parallel- 
plate channel, and comparisons are made with 
exact (numerical) solutions available in the 
literature. Then, the variational method is 
applied to the square duct, for which there are no 
entrance-region calculations in the literature and 
for which an exact solution has not beenpossible.~" 
In all the examples considered, the flow is 
laminar and fully developed, while the heat input 
is uniform along the length of the passage. 
However, the variational method may also be 
applied to the isothermal-wall boundary condi- 
tion and to turbulent flow. 

DESCRIPTION OF THE VARIATIONAL METHOD 
General remarks 

As early as 1885, it was demonstrated by 
Graetz [2] that the temperature solution in the 
thermal entrance region of a passage could be 
formulated as an eigenvalue problem. His 
analysis was concerned only with fully developed 
laminar flow in a circular tube having uniform 
wall temperature. Later, it was found [3-7] that 
the eigenvalue formulation would provide 
entrance-region results for both fully developed 
laminar and turbulent flows in circular tubes and 
parallel-plate channels for either uniform wall 
temperature or uniform wall heat flux. The same 
sort of formulation will apply to other non- 
circular ducts, as will be shown in a succeeding 
section. 

t added in proof: A paper, which appeared after this 
work was completed, gives some approximate results 
for rectangular ducts with boundary conditions different 
from those tr©ated here. This work by S. C. R. Dennis, 
A. McD. Mercer, and (3. Poots, appeared in Quart. 
Appl. Math. 17, 285 (1959). 
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To illustrate the way in which eigenvalues 
arise in the entrance-region heat transfer analy- 
sis, consider the p~'oblem of laminar flow in a 
circular tube with uniform wall heat flux. As 
shown in [6], the longitudinal variation of the 
wall temperature corresponding to the pre- 
scribed wall heat flux q may be written as 

T ~ -  To _ 11 4z/ro 
qro/k 24 "q- ~ + 

2 ( + C.R.(ro) exp Re Pr ro (1) 

where To is the temperature of the fluid entering 
the tube and z is the distance measured from the 
entrance of the heated section. In the expression, 

and R. ,  respectively, represent the eigenvalues 
and eigenfunctions of the following equation: 

r0 a [r dR.] 
r d (r/ro) ~7o d (r/ro)J + 

[ (')'] l -  T0 = 0  (2) 

dRn/dr ---- 0 at r -- 0 and r ---- r 0 

Solutions of this homogeneous equation with 
homogeneous boundary conditions are possible 
only for a discrete, though infinite number of 
values. Each ~ which permits a solution is 
called an eigenvalue, and the function R.  
associated with the eigenvalue is called an eigen- 
function. Equation (2) is a special case of the 
general Sturm-Liouville type. From Sturm- 
Liouville theory, it is noted in [6] that: 

~o [r/ro --  (r/ro) s] [(r/ro)* - -  
-- ¼ (r/r0)' -- 7/24] R ,  d(r/ro) 

C, = --  S~ [r/ro -- (r/ro)S]R~n d(r/ro) (3) 

From this, it is seen that once the eigenfunctions 
R,  are known, the coefficients C, of equation (1) 
.may be evaluated. So it is apparent that a know- 
ledge of the eigenvalues and eigenfunctions of 
equation (2) holds the key to the temperature 
solution (1). Since the ~ are all positive, it is 
seen that the series contribution to equation (1) 
dies away for large values of z. Thus, the series is 
only important i~ the entrance region and 
consequently, the eigenvalue problem is of 

interest only in connection with entrance-region 
heat transfer results. For the uniform wall 
temperature problem, the knowledge of eigen- 
values is not only necessary in the entrance 
region, but also in the fully developed domain.* 

Our goal here is to present and apply a varia- 
tional procedure for solving eigenvalue problems 
which may arise in connection with entrance- 
region heat transfer computations. The varia- 
tional method is especially advantageous for 
the lower eigenvalues, and because of this, it 
serves to compliment the approximate tech- 
niques of [8-10] which work best for higher 
eigenvalues. 

Consideration will be given to two general 
types of eigenvalue problems which may be of 
heat transfer interest. The first type arises when 
the temperature profile depends only on one 
cross-sectional co-ordinate, for example, the 
radial position in a circular tube or the distance 
from the center line of a parallel-plate channel. 
We will call this the one-dimensioual eigenvalue 
problem. The second type arises when the tem- 
perature profile depends upon two cross-section 
co-ordinates, as in a rectangular duct. We will 
call this the two-dimensional eigenvalue prob- 
lem. Separate presentations and examples will be 
given for each of the two types of problems. 

The one-dimensional eigenvalue problem 
We direct our attention to the Sturm- 

Liouville eigenvalue problem, which will include 
as special cases all heat transfer situations in 
which the temperature depends on only one 
cross-section co-ordinate. The Sturm-Liouville 
problem with which we are concerned is to find 
the eigenvaluest ~ and eigenfunctions R,  of the 
following equation: 

e + fR. + ~8,,g R,, = 0 (4a) 

with the condition that on the boundary surface 

R. = 0 or dR./d'o = 0 (4b) 

The functions e, f and g may depend upon the 

* The first eigenvalue, at least, is necessary in the 
fully developed rollion. 

? Only positive eigenvalues will arise in the problems 
of interest here. 
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independent variable '1. Now, according to the 
calculus of  variations (e.g. [11] ), there corre- 
sponds to equation (4) the following variational 
expression J:  

J - I1 - ~ I ~  (5)  

11 = f~ re(uRn~a,7)" - fRs~]a~ (6) 

I~ = f~gR~ dv (7) 

The variational expression J has a very special 
property, namely, that it takes on a stationary 
value, i.e. 8./----0, when evaluated using a fl~ 
and an R,, which satisfy equations (4a) and (4b). 
This characteristic suggests a procedure for 
obtaining approximate solutions for the eigen- 
values and eigenfunctions of equations (4a) and 
(4b) by using the variational expression J. The 
procedure is based on the Ritz method. Accord- 
ing to this approach, a set of functions R,1, 
R,,~ . . . .  is selected, each of  which satisfies the 
boundary condition (4b). With these, the nth 
eigenfuncfion R,  is written as 

P 
1 ~  --- A~tR,1  "q- A n s R , ~  q-  • • = Y, An iR , , i  (8) 

i=1  

where the A~I, A~ . . . .  are constants which 
remain to be determined. As explained later in 
detail, these unknown constants are found by 
imposing the condition that J take on a stationary 
value. An additional condition which must be 
satisfied by the eigenfunctions is that they are 
mutually orthogonal with respect to the weight- 
ing function g, i.e. 

lo = [b a gRnR,n d~ = O, 

m ' = n - - l , n - - 2  . . . .  ,1 (9) 

Thus, for the nth eigenfunction, there are n -- 1 
orthogonality equations. As a consequence, it is 
necessary to have at least n terms in the eigen- 
function expression (8) to insure that the varia- 
tional procedure can be fully carried through. 
For each eigenfunction, the variational pro- 
cedure may be reapplied successively using an 
increasing number of terms in the series (8) 
until convergence to a desired accuracy is 
achieved. The convergence is hastened by 
choosing the form of the R,,~ in accordance with 
any intuition or knowledge one may  have about 
the problem. We now turn to describing the 

detailed steps by which the variational procedure 
is applied. 

First eigenvalue: We begin by writing an 
expression for R1 in the form of equation (8), 
selecting each function RI~ in the series to satisfy 
the boundary conditions. With this, the integrals 
/1 and 12, equations (6) and (7), are evaluated, 
and the variational expression J, equation (5), is 
constructed. For the first eigenfunction, the 
orthogonality condition (9) need not be con- 
sidered, since there are as yet no other eigen- 
functions. To find ~t stationary value of J, the 
expression is differentiated successively with 
respect to each Ali and each resulting equation 
is set equal to zero. This provides a set of p 
linear, homogeneous (right-sides equal zero), 
algebraic equations involving the An, A12 . . . . .  
Ate. A solution to such a homogeneous set is 
possible only if the determinant of the coefficients 
is equated to zero, and from this, there arises 
a polynomial of which B~ is the smallest root. 
Then, returning to the p homogeneous algebraic 
equations, it is possible to find p -  1 of the 
constants Ali. The last coefficient is found by 
some other condition such as normalizing, i.e. 
setting Iz = 1, or else by assigning some arbitrary 
value to R1 at some particular value of 7. As has 
already been noted, the procedure can then be 
repeated using a larger number of terms in the 
series (8) until a desired accuracy is attained. 

Higher eigenvalues: The variational method 
for higher eigenvalues follows a path similar 
to that outlined for the first eigenvalue, except 
that the orthogonality condition (9) must now 
be incorporated into the procedure. This con- 
dition requires that the eigenvalues and eigen- 
functions be found in ascending order; since the 
computation for the nth eigenfunction R,, 
assumes that all preceeding eigenfunctions are 
known. By employing the orthogonality con- 
ditions (9), it is possible to solve for n -- 1 of 
the Ani in terms of all the others. Then, turning 
to the expression for J, these particular A,i may 
be eliminated by direct substitution. Thus, the 
number of Ani remaining in J is reduced to 
p -- (n -- 1). The stationary value of J is found 
by differentiating successively with respect to 
each of the remaining An~ and equating each of 
the resulting equations to zero. From these 
p -- (n -- 1) linear homogeneous equations, the 
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eigenvalue ~, can be found in a manner identical 
to that described in connection with the com- 
putation of the first eigenvalue. Then, the 
constants A,~ are computed using these 
p -  ( n -  1) equations and the orthogonality 
conditions. Because these equations are homo- 
geneous, there will still be one undetermined A,,~ 
and this can be found by imposing additional 
conditions as previously described. The process 
can then be repeated, taking additional terms 
in the series (8) until a suitable result for ~ and 
R. is achieved. 

To help fix these ideas, illustrative examples 
will be given in a later section. 

The two-dimensional eigenvalue problem 
For the situation where the temperature 

depends upon two cross-sectional co-ordinates, 
the two-dimensional eigenvalue problems which 
lend themselves to solution by the variational 
technique are given by the following equation 
[12]:  

0__ + / R .  + = 0 

(10a)  

with the condition that on the bounding surface 

R. = 0 or OR./ON = 0 (10b) 

In this equation, the functions e, f and g may 
depend on both co-ordinates m and % In a 
manner parallel to the one.dimensional case, 
there exists a variational expression J which 
corresponds to the eigenvalue problem defined 
by equations (10a) and (10b). Rephrasing the 
findings of [12], J may be written as 

J = / 1  - ~ ,  ( l l )  

ar~a (12 )  

X, ---- I ,I gR~ d, h d ~ (13) 
ar lga  

As before, the variational expression has the 
particular property that it takes on a stationary 
value when evaluated with an eigenvalue and 
eigenfunction of  equations (10a) and (10b). 

This characteristic serves as a basis of an 
approximate method for finding the ~ and R,  
which,is essentially identical to that which has 
already been described for the one.dimensional 
case. In applying the procedure to the two- 
dimensional case, it is to be remembered that the 
functions R,~ which make up the series (8) may 
now depend upon the two co-ordinates ~ and 
~Ts, instead of on the single ~7 as before. Also, for 
the two-dimensional situation, the orthogonality 
condition takes the form 

I o ---- f f gR.R, ,  d~ 1 d~s = O, 
a r e a  

m = n - - l , n - - 2  . . . . .  1 (14) 

With these modifications, the detailed directions 
for using the variational method in the one- 
dimensional problem also apply here, and hence 
they need not be repeated. 

An entrance-region heat transfer computation 
for a square duct will be carried out in a later 
section, and this will aid in further clarifying the 
application of the variational procedure to the 
two-dimensiona/case. 

APPLICATION TO A CIRCULAR TUllE 
As a first illustration of the application of the 

variational procedure, we consider the problem 
of laminar flow in a circular tube with uniform 
wall heat flux. The solution for the wall tem- 
perature as a function of position along the tube 
length has already been given in equation (1), 
while the associated eigenvalue problem is 
defined by equation (2). Now, for the uniform 
heat flux problem, it is well known that the first 
eigenvalue ~ is zero, while R, is a constant 
usually taken as unity. It is also easy to show 
from equation (3) that (21 = 0. So, with ~ and 
R1 known, we turn our attention to finding the 
second eigenvalue ~ and its corresponding 
eigenfunction Rs. 

To apply the variational method, we first 
compare equation (2) with the general form (4) 
and find that 

'7 ~ r/re, • ~ ~7, f = 0, g ~ v/(1 --v/s) 

With this, the integrals Io,/1 and I, become 

Xo = ,7(I - = 0.  
m = n - -  1, n - -  2 . . . . .  1 ( 1 5 )  
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1] = SXo ~l(dR,/d~)* d,1, 

i ,  = 7(1 - a0  (16) 

The next step is to write P~ as a sum of terms in 
the form of equation (8). In electing the func- 
tions R~, we take cognizance of the boundary 
conditions (2) and of the fact that the eigen- 
functions can have both positive and negative 
lobes between ~7 = 0 and , / =  1. Functions 
which immediately suggest themselves for the 
role of R2, are cos 0r~ = 1, cos ~-q, cos 2m 7, etc. 
So as a first approximation for R, in the form 
(8), we write: 

R2 = A2x + An cos m 7 (17) 

Then, substituting in equations (15) and (16) and 
carrying out the integration yields:* 

Io = + A n  ~ - - ~ - 4  = 0  ( lga)  

/ i  - -  A | , ~ #  (18b) 
4 

A~x I 12 3 
I 2 = -  T + 2A21An ( ~ - -  ~ i )  + 8---s-~ (1 -- ~ )  

(18c) 

Now, using equations (18b) and (18c), we can 
construct the variational expression 

Then, by the orthogonality condition (18a), A~ 
can be eliminated from J, giving 

J =  4 ~ --4A**, ~-~ "~i-- + 

To find the stationary value, we take OJ/OA,, = O, 
and from this it follows that 

= 28-997 (20) 

Considering the simplicity of  the approximation 
and the relative ease of computation, this result 
is in surprisingly good agreement with the exact 
value [6]: 

----- 25.6796 (21) 

* It is to be remembered that R~_ t = R 1 = constant. 

The constants A~x and Am remain to be deter- 
mined. From the condition OJ/OAn = 0. there 
is obtained an algebraic equation which tells us 
nothing about the constants. But, from the 
orthogonality condition (18a), we have the 
ratio of Au to An. With this, the eigenfunction 
expression (17) becomes 

R2 = A1(0"087482 + cos ~-~) (17a) 

As expected in accordance with what has been 
said in the general presentation of the varia- 
tional method, there remains one undetermined 
constant which must be found from other con- 
ditions. To facilitate comparison with [6], we 
impose the condition that R~(0) = 1, and with 
this, equation (17a) becomes 

Re = 0.080445 + 0.91956 cos Tr~ (17b) 

The value of R at r - - r 0  ( ' 7 = 1 )  plays an 
important role in the wall-temperature com- 
putation, as may be seen from equation (1). 
The first approximation, equation (17bL gives a 
value R~(I) = --0.83911, as opposed to 
--0.49252 from the exact solution. This compari- 
son strongly suggests that a higher variational 
approximation be carried out for R2. 

As a logical refinement of equation (17), we 
add on a term cos 217-0 and write 

R2 = A~a + An cos m? + A23 cos 2~, 7 (22) 

Proceeding as before, 1o,/1 and I, are computed 
by integration of equation (22). From the 
orthogonality condition, I0 = 0, there is 
obtained 

A~I = 0"087482 An -4:- 0"303964 A~.a (23) 

Using /i and I,, the variational expression 
J = I 1 - -  ~I~ is evaluated to be 

J = 2"46740 A2, -- 3"55556 AnA~a + 

+ 9"86960 = A~a -- 

-- ~[0"0870045 A~ -- 0"0121336 AnAzs + 

+ 0"115501 A~a -- 0"25 a~t] (24) 

Au can be eliminated from this expression by 
using equation (23), leaving only A n and Ag.~. 
The stationary value of J is achieved by taking 
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bJ/~A,., = O, OJ/~A~s = O. From this, there 
results: 

k /  
~A--n = 0 -*  (4.93480 -- 0.170182/~,)A,, + 

+ (--3.55556 + 0.0254293 ~)A~a = 0 
eJ (25) 

-- 0 -~  (--3.55556 + 
~A2s 

+ 0"0254293 ~)A22 + (19"7392 -- 
-- 0" 184805 ff.~l)Ata = 0. 

A nontrivial solution of this pair of linear, 
homogeneous equations is possible only if 

(4.93480 -- 0.170182 ~ )  
(--3-55556 + 0.0254293 ~ )  = 0 

(--3.55556 + 0.0254293 ~ )  
(19.7392 -- 0-184805 ~ )  

This determinant yields a quadratic equation for 
~ ,  the smallest root* of which is 

= 25.6956 (26) 

This is in remarkably close agreement with the 
value 25.6796 from the exact solution. Now, 
turning to the determination of the constants 
A~, there is first obtained from either of  equa- 
tions (25) the ratio Azs/A,,. Next, from equation 
(23), the ratio A=/Au is found. Finally there is 
imposed the condition that R~(0) = 1. With this 
information, all three constants may be calcu- 
lated and the expression for R2 becomes 

R2 = 0-109207 + 0.746309 cos ~ + 

+ 0 -H~84  cos 2~,-q (22a) 

The value of R2 at the tube wall ('1 = 1) has 
been already noted as playing an important role 
in the heat transfer results. Equation (22a) 
gives a value Rs(1)=--0-49262, which is in 
excellent agreement with the result --0-49252 
from the exact solution. In addition to R,,(1), the 
solution for the wall temperature variation as 
given by equation (1) depends on the coefficients 
C.. These constants can be computed from the 
quotient of integrals given in equation (3). 

* Since the value of /3.: associated with the exact 
solution is an absolute minimum, it is clear that  the best 
result is achieved by selecting the smallest root. 

Utilizing equation (22a) for R2, the coefficient Cs 
is computed as 0.40680, which deviates by only 

_0-8 per cent from the value 0.40348 given by the 
exact solution. 

This illustration demonstrates that the varia- 
tional proc~lure is capable of providing excellent 
heat transfer results. The high level of agreement 
indicates that there is no need to refine R~ 
further. However, if an exact solution had not 
been available for comparison purposes, it 
would have been necessary to take a higher 
approximation for Rz to establish the level of 
accuracy. 

If desired, the variational method could now 
be applied to the computation of the next eigen- 
function Rs. No essential changes in the method 
are necessary, except that the expression for 
Rs in the form of equation (8) would likely 
contain additional cosine terms. Also, in the 
orthogonality condition (15), we would use 
equation (22a) for the known eigenfunction Rs, 
while Ra is a constant. However, since our 
purpose in considering the circular tube has 
only been to illustrate the variational method, 
the computation for the higher eigenvalues will 
not be carried out. 

APPLICATION TO A PAR~LLg.L PLATE CHANNEL 

As a second example which may serve to 
establish confidence in the variational procedure, 
we turn to the problem of laminar flow in a 
parallel-plate channel with uniform wall-heat 
flux. Corresponding to the prescribed heat 
flux, the variation of the wall temperature along 
the length is given by: 

T,~ -- To 17 z/a 
qa/k -- ~ + Rea-~--Pr + 

~R 
(27) 

(3/2) Re, Pr a f  

dI R~ 
e(.v/a)' 

+ P ~ .  [1 - -  ( y /a ) ' ]  = 0 (28a) 

dR./dy = 0 at y ---- 0 and y = a (28b) 

The eigenvalues R~ and eigenfunctions /}n are 
found from the following homogeneous system: 
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while the coefficients Cn are computed from the 
ratio: 

C n  ~ - -  

fe ~ [1 -- (y/a) 21 [~(y/a)' -- ~(y/a)" -- 39/2801R. d(y/a) 
.(~ [1 -- (y/a)t]R~ d(y/a) 

(29) 

Here again is a problem ideally suited for the 
variational procedure. Comparing equation 
(28a) with the general one-dimensional form 
(4a), it is seen that 

= y / a ,  e = l , f = 0 ,  g = l - - ~ 7  s (30) 

and the integrals I0,/1 and Is become 

I0 = It (1 -- ~7')R,,R,,, d,7 = O, 
m = n - -  l , n - - 2  . . . . .  1 (31a) 

11 = g(dR,,/dO)' d~, /2 = g(l -- ~S)R~d~ (31b) 

Since we are dealing with the case of uniform 
wall heat flux, it follows that ~ = 0, RI = con- 
stant, and CI = 0. So, attention can immedi- 
ately be directed to the second eigenvalue R2. 
Drawing upon our experience with the circular 
tube, we start out by writing R2 in the form of 
equation (22). Following through the operations 
as before, it is found that 

= 18.39, R2 :- --0.3157 -}- 
-+- 1.124 cos ~rO -I- 0.1924 cos 2 7 (32) 

The numerical solution of [7] yields a value of 
18.38 for ~ .  For Rs(l), which is needed in the 
wall-temperature computation, [7] gives --1.27 
as compared to --1.25 from the variational 
solution (32). No results for Cs are provided in 
[7] and so this computation is omitted here. 

From the excellent level of agreement which 
has been demonstrated, one can draw a real 
feeling of confidence in the utility of the varia- 
tional procedure. 

APPLICATION TO A SQUARE DUCT 

For the previous examples which have been 
presented, there exist numerical solutions in the 
literature. These illustrations have been useful 
in establishing a feet for the accuracy which 
could be achieved by the variational method. 
Now, we turn to a situation for which there are 
no entrance-region calculations in the literature. 

Consideration is given to a laminar flow in a 

square duct, Fig. 1, having a heat flux which is 
uniform both along the length and around the 
periphery. Since this physical problem is not 
treated elsewhere, we start from first principles. 

{ 

w(x,y) 

ro 

FIG. I. Co-ordinate system for square duct. 

The energy equation appropriate to the fully 
developed laminar flow of an incompressible, 
constant property fluid is 

~T / a~T -LT~ 
pc~w -~- = k t -  ~ + ~-~y2! (33) 

where axial heat conduction has been neglected 
compared to transverse conduction. Far down 
the duct, OT/Oz becomes a constant and the 
condition of fully developed heat transfer is 
achieved. A solution for the temperature distri- 
bution in the fully developed regime has been 
found by variational means in [I] as follows. 

T-- To 2Z 
Q/8-----k = Re~-----~ + ~ (34a) 

X 2 @ y2 
-- 2 --0.16032 [(X ~ -- 1) 2 + 

-}- ( Y ~ -  1) ~] --0.13290 
[(X 2 -- 1) ( y2 _ 1)]2 + 0.06803 (34b) 

where To is the temperature of the fluid entering 
the duct, Q is the heat transfer per unit length 
and X, Y and Z are dimensionless co-ordinates. 

Now, turning to the entrance-region, we 
propose a solution in the following form which 
will apply anywhere throughout the duct: 

T - - T o  2Z - - + ~ +  
Q/8k Rea Pr 

oo  

:~ z) (35) ÷ ~ C, Rnexp( Re, P,  
n ~ l  
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In this equation, R~ depends on both cross-sec- 
tion co-ordinates X and Y. To find the governing 
equation for R,, (35) is introduced into the 
energy equation (33), from which it follows that: 

OSR~, 02R, -t- ~ ÷ fl~(w/g,)R, = 0 (36a) 

It is also easy to show that: 

dR/dX ---- 0 at X ± 1, 

dR/dY = 0 at Y ---- q-I (36b) 

So, once again we have an eigenvalue problem. 
The first thought about solving equation (36) is 
to try separation of variables, i.e. to suppose that 
R ,  is a product of a function of  X and a function 
of Y. However, this approach is not successful 
since the velocity distribution w/~ is not in a 
product form. Hence, it is necessary to deal with 
equation (36a) as it stands. 

The eigenvalue problem as represented by 
equations (36a) and (36b) is well-suited to be 
attacked by the variational procedure. Com- 
paring equation (36a) with the general two- 
dimensional form (10a), it is seen that: 

r h = X ,  r / z =  Y, e = l , f = 0 ,  g = w / ~  (37) 

With this, the integrals I0,/1 and I~ as given by 
equations (14), (12) and (13) become 

Io= 4 f~ f~ (w/~')RnR,~ dX dY = O, 
re=n-- l,n--2 ..... I (38a) 

/1 ---- 4 y~ y0 x [(0R,/eX) 2 + (~R,/O Y)S]dXdY (38b) 

Is = 4 y~ f~(w/~)R~ dX d r  (38c) 

Since we are dealing with the uniform heat flux 
ease, the first eigenvalue ~ is zero, while 
R1 = constant and C1 = 0. So consideration 
can be immediately given to the second eigen- 
value Rs. In selecting a trial function for Rs, we 
are guided by prior experience with the parallel- 
plate channel. For that configuration, an eigen- 
value expression in the form of equation (22) 
proved to be quite satisfactory. Generalizing 
equation (22) to the two-dimensional ease, we 
write 

R~ = Am -q- An cos ~rX cos wY -+- 

+ Ass [cosrrXeos2~rY-+- cos2rrXcos~rY] (39) 

where the constants Am, An and Ass remain to be 
determined by use of the variational method. 
The first step is t o  compute the I integrals of 
equations (38). To carry out the integrations, a 
knowledge of  the velocity distribution w/~ is 
required. An accurate velocity profile has been 
determined by variational means [1 ] as follows: 

w/ff, = ( X  2 - -  1) (Y~ - -  1) [2-0983 q- 

q- 0.29181 (X s q- ys) _+. 0.87546 X~Y s] (40) 

Utilizing this expression in conjtmction with 
equation (39), the I integrals are found to be 

I0 ---- Ata -Jr- 0"082665 A., -- 

-- 0.0432577 Ass = 0 (41a) 

11 = 2 :  [Ah -I- 5A|s] (41b) 

/2 ---- --4A.1 -k 0.83989 A|s + 

q- 2.0001 A~s -k 1.16410 As~'lsa (41c) 

Then, the variational expression J ---- I1 -- ~ l s  
is constructed. Utilizing equation (41a), it is 
possible to eliminate Am from J, leaving only 
An anti Ass. The stationary value is found by 
setting ~J/0,,ln = 0 and 0J/0An = 0. From this, 
there is obtained 

OJ 
OAn 
- -  ---- 0 --~ (39-478 -- 1.6251 ~ )An  -- 

-- (1.1927 ~)Ass ---- 0 (42a) 

~J 
- - -  = 0---~ (--1.1927 ~)A~, -k 
aAss 

+ (197"39 -- 3"9852 fl~)Ass = 0 (42b) 

By setting the determinant of the coefficients 
equal to zero, there results a polynomial in ~ ,  
the smallest root of  which 

= 20-929 (43) 

provides the second eigenvalue. Next, the 
constants Am, An and Ass are found by utilizing 
either of  equations (42) in conjunction with 
(41a) plus an additional condition. In this in- 
stance, as a matter of variety, we will impose the 
condition that the eigenftmction be normalized, 
i.e. Is = 1. There is thus sufficient information 
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to determine all the constants, and the final ex- 
pression for the eigenfunetion R2 becomes: 

R2 = 0.067685 -- 0.92477 cos =Xeos = Y-- 
-- 0.20252 [cos =X cos 2,r Y + 

+ cos 2~'X cos rr Y] (44) 

The last bit of information needed to compute 
temperature distribution results from equation 
(35) is the constant C2. Imposing the condition 
that T = To at the entrance section (Z = 0), 
equation (35) becomes 

C.R,~ = - -  ~ (45a) 

Then, multiplying through by (w/$)R,n and 
integrating over X and Yfrom 0 to 1, it follows 
by use .of the orthogonality condition (38a) that 

C~ = - Y~I~ (w/+)~,  , ix  d r 
S~PoCw/+)~ , ix  a r  

(45b) 

Carrying out the integration for R2, it is found 
that 

C2 = --0-2467 (46) 

This completes the computation for the second 
eigenfunetion. To check the level of accuracy of 
the results, the variational procedure might be 
reapplied to an expression for RI which contains 
additional terms. But, we have decided instead 
to redo the problem using a completely different 
approximation procedure. The method is a 
modification of an idea presented by Millsaps 
and Pohlhausen [13] and its application to the 
current problem is discussed briefly in the 
Appendix. The results of this alternate compu- 
tation are in very good agreement with those of 
the variational method. 

With the second eigenvalue at our disposal, 
we can now turn to a discussion of the heat 
transfer results. The temperature distribution 
corresponding to the prescribed heat flux is 
given by equation (35), where d, represents the 
fully developed solution as written in equation 
(34), while Cs, R~ and ~ are given by equations 
(46), (44) and (43), respectively. Since we have 
only one term of the series (C1 = 0), attention 
must be directed to that portion of the duet near 
the fully developed region. When the heat flux 

is prescribed, the information of greatest 
interest is the resulting wall temperature. In this 
instance, where the heat flux is everywhere 
uniform, the wall temperature will vary around 
the periphery in any cross-section, as well as 
along the length. Because of the symmetry of 
the problem, consideration need only be given to a 
typical part of the wall: X = I ,  0~< Y~<I. 
The wall-temperature result can be put in a 
convenient form by first introducing the bulk 
temperature Tb: 

T~-- r 0 _  2Z 
Q/8k ReoPr 

(47) 

and then, it may be observed that under fully 
developed conditions 

( T -  Tb)Id _ 9~ (48) 
Q/Sk 

With these, equation (35) can be rephrased as: 

T- -T~  
(T- Tb)1d 

oc 

c. nox,( z) Re:r 
n u l  

= 1 + d' (49) 

Finally, at the wall (X = 1, 0 ~< Y ~< 1), there 
is obtained 

T.-- Tb _ I (To - Tb)Is 

l+C.[~].,.= e x p ( ~ z ) ,  (50) 
0~< Y ~ < I J  

where the series has been truncated after n = 2. 
The group C~(R2/~)x=l as evaluated frbm the 
variational method has been plotted as a solid 
line on Fig. 2. In the region near the mid-wall 
(Y = 0), the group has negative values; while 
near the corner, the group has positive values. 
Using this information in conjunction with 
equation (50), it is seen that for locations near 
the comer, the wall-to-bulk temperature differ- 
ence is greater in some part of the entrance- 
region than it is in the fully developed region. 
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Of course, without additional terms in the 
series, it is not possible to know the extent of the 
entrance region w h e r e  (T,~ - -  T~) > (T,~ - -  Tb)y a. 
This finding is somewhat surprising in view 
of previous experience with one-dimensional 
geometries such as the circular-tube and parallel- 
plate channel. In those configurations, where 
peripheral variations are absent, T~ -- T~ in the 
entrance-region is always less than the fully 
developed temperature difference. In the present 
instance, where there are peripheral variations, 
it is the feeling of the writers that T,~ - -  Tb is 
not the governing driving force for heat transfer 
at local positions around the periphery. Hence, 
there would be no reason to expect that 
the longitudinal variation of T ~ -  Te should 
follow the same trend here as was found in the 
simpler geometries. The fact that the longitudinal 
temperature variations are different in different 
parts of the cross-section suggests that there is 
little utility in computing average Nusselt 
numbers. 

The findings derived from the variational 
method are closely confirmed by the alternate 
computation of the Appendix, as may be seen 
from the dashed line of Fig. 2. This good agree- 
ment increases our confidence in the results, but 
ultimate confirmation awaits some more exact 

solution, an approach to which is currently not 
apparent to the writers. 

CONCLUDING R1GMARKS 
The examples considered here are meant to 

illustrate the method and by no means exhaust 
the problems to which the variational technique 
can be applied. 

Although the illustrations were concerned 
with the uniform heat flux case, solutions for 
uniform wall temperature are obtained with 
equal facility. In the latter case, the functions 
R,~ which make up the eigenfunction expression 
(8) would be selected to have zero values at the 
wall, rather than zero derivatives as in the former. 
It is also worth noting that the first eigenvalue 
for the uniform wall temperature situation will 
not be zero, nor will R1 be a constant. Aside 
from these matters, the method is applied exactly 
as has been illustrated. 

In principle, the variational procedure could 
be applied to problems in turbulent heat transfer. 
However, no work has thus far been done along 
these lines. 

APPENDIX 
Al te rna te  Eigenvalue  Calculat ion 

According to the idea of  Millsaps and Pohl- 
hausen [13], the eigenfunctions for a laminar 
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convective, heat transfer problem are expanded 
in terms of the eigenftmctions of  the slug-flow 
problem. For the square duct, such an expan- 
sion for R2 which is truncated after three terms is 

Rz = D1 cos rrX cos rr Y + 

+ D2(cos rrXcos 2rr Y + cos 2rrXcos rr Y) + 

+ Ds(cos 2*rX cos 27r Y) (51) 

where D,, D,  and Da remain to be determined. 
Introducing this expression into the governing 
equation (36a) gives: 

2~-2D, cos ,rX cos ,r Y + 

+ 5*r2Da(cos ~rX cos 2~r Y + 
(52) 

+ cos 2~'X cos rr Y)  + 

+ 8~r2D,(cos 2~rXcos 2~r Y)  = fl'~(w/~,)R~ 

Then, equation (52) is multiplied through by 
cos rrX cos ,r Y and integrated over X and Y 
from 0 to 1. Next, equation (52) is multiplied by 
(cos ~rX cos 2*r Y + cos 2~rX cos *r Y) and inte- 
grated over the same range. Finally, this same 
procedure is carried through with cos 2~-X 
cos 2~r Y. The result of  these operations is three 
linear, homogeneous, algebraic equations for 
the Da, D2 and Ds, the coefficients of  which 
contain ~ .  To  obtain a nontrivial solution, the 
determinant of  the coefficients is equated to 
zero, and this gives: 

= 20.222 (53) 

which is rather good agreement with equation 
(43) f rom the variational procedure. The 
D-values are then found by returning to the 
homogeneous algebraic equations, f rom which 
two of  the three D's  can be determined in terms 
of the third one. The third D value may be left 
unspecified or else arbitrarily assigned. This will 
have no effect on the final result for the desired 
quantity C , R ,  (see equation (35)), since a 
change in the level o f  R,, will be automatically 
compensated by a corresponding change in C,. 
Then, turning to the computation of  C2, the R~ 
expression (with D-values now known) is intro- 
duced into equation (45b) and the integration 
carried out. With this, the final result for the 
C2R2 product is 

C2R2 = 0"2140 cos ,rX cos trY + 

+0"01740 cos 2rrX cos 2rr Y + 

+0"04698(cos *rX cos 2~r Y + 

+ cos 2~rX cos rr Y) (54) 

Since the form of (54) is somewhat different 
f rom that of  the variational eigenfunction, 
comparisons are best made by evaluating the 
expressions at specific X- and Y-values. Fig. 2 
shows a comparison made along the wall, 
X = 1, 0 <~ Y ~< 1, with quite good agreement. 
A similar comparison has been made along the 
center-line in the fluid, X = 0, 0 ~< Y ~< 1, with 
about  the same level of agreement. 
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